AP Calculus BC - McGlone

Section 10.6 - Tangents (Anton new)

Find the slope of the tangent line to the polar curve for the given value of $\boldsymbol{\theta}$.

1. $r=2 \sin \theta ; \theta=\frac{\pi}{6}$
2. $r=1+\cos \theta ; \quad \theta=\frac{\pi}{2}$
3. $r=\frac{1}{\theta} ; \quad \theta=2$
4. $r=a \sec \theta ; \quad \theta=\frac{\pi}{6}$
5. $r=\sin 3 \theta ; \quad \theta=\frac{\pi}{4}$
6. $r=4-3 \sin \theta ; \quad \theta=\pi$

Calculate the slopes of the tangent lines indicated in the accompanying figures.
7. $r=2+2 \sin \theta$

8. $r=1-2 \sin \theta$

Sketch the polar curve and find polar equations of the tangent lines to the curve at the pole.
9. $r=2 \cos 3 \theta$
11. $r=4 \sqrt{\cos 2 \theta}$
13. $r=1-2 \cos \theta$
12. $r=\sin 2 \theta$
10. $r=4 \sin \theta$
14. $r=2 \theta$

Use a graphing utility to make a conjecture about the number of points on the polar curve at which there is a horizontal tangent line. Confirm your conjecture by finding the angles at which these tangents occur.
15. $r=\sin \theta \cos ^{2} \theta$
16. $r=1-2 \sin \theta$

Section 10.6 - Tangents (Anton new)

nd the slope of the tangent line to the polar curve for the given value of θ.

1. $r=2 \sin \theta ; \theta=\frac{\pi}{6}$

$$
\left.\frac{d y}{d y}\right|_{\theta=\frac{\pi}{6}}=\left.\frac{\frac{1}{d \theta}\left(2 \sin ^{2} \theta\right)}{\frac{d}{d \theta}(2 \sin \theta \cdot \cos \theta)}\right|_{\theta=\pi / 6}=\left.\frac{2 \sin \theta \cos \theta}{\sin \theta \cdot \sin \theta+\cos \theta \cdot \cos \theta}\right|_{\theta=\pi / 6}=\frac{2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2}}{\frac{1}{2} \cdot \frac{1}{2}+\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}
$$

2. $r=1+\cos \theta ; \quad \theta=\left.\frac{\pi}{2} \quad \frac{d y}{d x}\right|_{\theta=\frac{\pi}{2}}=\left.\frac{\frac{d}{d \theta}((1+\cos \theta) \sin \theta)}{\frac{d}{d \theta}((1+\cos \theta) \cos \theta)}\right|_{\theta=\pi / 2}=\left.\frac{(1+\cos \theta)(\cos \theta)+\sin \theta(-\sin \theta)}{(1+\cos \theta)(-\sin \theta)+\cos \theta(-\sin \theta)}\right|_{\theta=\pi / 2}=\frac{-1}{-1}=1$
3. $r=\frac{1}{\theta} ; \theta=\left.2 \quad \frac{d y}{d x}\right|_{\theta=2}=\left.\frac{\frac{d}{d \theta}\left(\frac{1}{\theta} \cdot \sin \theta\right)}{\frac{d}{d \theta}\left(\frac{1}{\theta} \cdot \cos \theta\right)}\right|_{\theta=2}=\left.\frac{\frac{1}{\theta} \cdot \cos \theta+\sin \theta \cdot \frac{-1}{\theta^{2}}}{\frac{1}{\theta} \cdot-\sin \theta+\cos \theta-\frac{1}{\theta}}\right|_{\theta=2}=\frac{\frac{1}{2} \cos 2-\frac{1}{4} \sin 2}{-\frac{1}{2} \sin 2-\frac{1}{4} \cos 2}$
4. $r=a \sec \theta ; \theta=\frac{\pi}{6} \quad r \cos \theta=a \Rightarrow x=a$ VERTICAL LINE $\left.\Rightarrow \frac{d a}{d k}\right|_{\theta=\pi / 6}$ IS UNDEFINED.
-4
5. $r=\sin 3 \theta ; \quad \theta=\left.\frac{\pi}{4} \quad \frac{d y}{d x}\right|_{\theta=\pi / 4}=\left.\frac{\frac{d}{d \theta}(\sin 3 \theta \cdot \sin \theta)}{\frac{d}{d \theta}(\sin 3 \theta \cos \theta)}\right|_{\theta=74}=\left.\frac{\sin 3 \theta \cdot \cos \theta+\sin \theta \cdot 3 \cos 3 \theta}{\sin 3 \theta \cdot \sin \theta+\cos \theta \cdot 3 \cos 3 \theta}\right|_{\theta=\pi}=\frac{\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{x}+\frac{\sqrt{2}}{z} \cdot 3 \cdot \frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{z} \cdot \frac{\sqrt{2}}{z}+3 \frac{\sqrt{2}}{z} \cdot \frac{\sqrt{2}}{x}}$

$$
=1 / 2
$$

6. $r=4-3 \sin \theta ; \quad \theta=\pi$

$$
\left.\frac{d y}{d x}\right|_{\theta=\pi}=\left.\frac{\frac{d}{d \theta}((4-3 \sin \theta) \sin \theta)}{\frac{d}{d \theta}((4-3 \sin \theta) \cos \theta)}\right|_{\theta=\pi}=\left.\frac{(4-3 \sin \theta) \cos \theta+\sin \theta(-3 \cos \theta)}{(4+3 \sin \theta)(\sin \theta)+\cos \theta(-3 \cos \theta)}\right|_{\theta=\pi}=\frac{4(-1)+0}{(4)(0)-3(1)}=4 / 3
$$

Calculate the slopes of the tangent lines indicated in the accompanying figures.
7. $r=2+2 \sin \theta$
8. $r=1-2 \sin \theta$

$$
\begin{aligned}
\left.\frac{d y}{d x}\right|_{\theta}=0 & =\left.\frac{\frac{d}{d \theta}((2+2 \sin \theta) \sin \theta)}{\frac{d}{d \theta}((2+2 \sin \theta) \cos \theta)}\right|_{\theta=0} \\
& =\left.\frac{(2+2 \sin \theta)(\cos \theta)+\sin \theta(2 \cos \theta)}{(2+2 \sin \theta)(-\sin \theta)+\cos \theta(2 \cos \theta)}\right|_{\theta=0} \\
& =\frac{(2)(1)+0}{(2)(0)+2}=1
\end{aligned}
$$

$$
\begin{aligned}
\left.\frac{d y}{d x}\right|_{\theta=0} & =\left.\frac{\frac{d}{d \theta}((1-2 \sin \theta) \sin \theta)}{\frac{d}{d \theta}((1-2 \sin \theta) \cos \theta)}\right|_{\theta=0} \\
& =\left.\frac{(1-2 \sin \theta) \cos \theta+\sin \theta(-2 \cos \theta)}{(1-2 \sin \theta)(-\sin \theta)+\cos \theta(-2 \cos \theta)}\right|_{\theta}=0 \\
& =\frac{(1)(1)+0}{(1)(0)+2}=-1 / 2
\end{aligned}
$$

Sketch the polar curve and find equations of the tangent lines to the curve at the pole.

11. $r=4 \sqrt{\cos 2 \theta}=0 \Rightarrow \cos 2 \theta=0$
$r^{2}=16 \cos 2 \theta$

$$
\begin{gathered}
2 \theta=\pi / 2_{1} 3 \pi / 2_{1} \\
\theta=\pi / 4,3 \pi / 4 \\
\left.\left.\frac{d y}{d x}\right|_{\theta=\pi / 4}=\tan ^{\pi}\right)_{4}=1 \Rightarrow y=x \\
\left.\frac{d y}{d x}\right|_{\theta=1}=\tan \frac{3 \pi}{4}=-1 \Rightarrow y=-x
\end{gathered}
$$

13. $r=1-2 \cos \theta=0 \Rightarrow \cos \theta=1 / 2$

$$
\theta=\pi / 3,5 \pi / 3
$$

$$
\left.\frac{d y}{d x}\right|_{\theta=\pi / 3}=
$$

$$
\left.\frac{d y}{d x}\right|_{g=\frac{5 \pi}{3}}=\tan \frac{5 \pi}{3}=-\sqrt{3} \Rightarrow y=-\sqrt{3} x
$$

Use a graphing utility to make a conjecture about the number of points on the polar curve at which there is a horizontal tangent line. Confirm your conjecture by finding the angles at which these tangents occur.
16. $r=1-2 \sin \theta$

$$
\begin{aligned}
& \frac{d}{d \theta}((1-2 \sin \theta) \sin \theta)=0 \\
& 0=\cos \theta-4 \sin \theta \cos \theta \\
& 0=\cos \theta(1-4 \sin \theta) \\
& \cos \theta=0 \quad \sin \theta=114 \\
& \theta=\pi / 2,3 \pi / 2 \quad \theta=\underbrace{.253,2.888}_{\text {sine HoRe17. Tank }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 15. } r=\sin \theta \cos ^{2} \theta \\
& \frac{d}{d \theta}\left(\sin ^{2} \theta \cos ^{2} \theta\right)=0 \\
& 0=2 \cos ^{3} \theta \sin \theta-2 \cos \theta \sin ^{3} \theta \\
& 0=2 \cos \theta \sin \theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
& \theta=\underbrace{0, \pi} \pi / /_{2} \pi / \mu_{3} 3 \pi / 4 \\
& \text { Sims tins. } \\
& \text { TPNBENT. }
\end{aligned}
$$

